Synthesis, Characterization and Biological Evaluation of Ureidofibrate-Like Derivatives Endowed with Peroxisome Proliferator-Activated Receptor Activity

Laboratorio di Oncologia Sperimentale Clinica, Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy
Dipartimento di Scienze Farmacologiche, Università degli Studi di Milano, 20133 Milano, Italy
Dipartimento Farmaco-Chimico, Università degli Studi di Bari “Aldo Moro”, 70126 Bari, Italy
Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Università di Roma “La Sapienza”, 00185 Roma, Italy
Dipartimento di Chimica Farmaceutica e Tossicologica, Università di Napoli “Federico II”, 80131 Napoli, Italy
Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Montelibretti, 00015 Monterotondo Stazione, Roma, Italy

ABSTRACT: A series of ureidofibrate-like derivatives was prepared and assayed for their PPAR functional activity. A calorimetric approach was used to characterize PPARγ-ligand interactions, and docking experiments and X-ray studies were performed to explain the observed potency and efficacy. R-1 and S-1 were selected to evaluate several aspects of their biological activity. In an adipogenic assay, both enantiomers increased the expression of PPARγ target genes and promoted the differentiation of 3T3-L1 fibroblasts to adipocytes. In vivo administration of these compounds to insulin resistant C57Bl/6J mice fed a high fat diet reduced visceral fat content and body weight. Examination of different metabolic parameters showed that R-1 and S-1 are insulin sensitizers. Notably, they also enhanced the expression of hepatic PPARα target genes indicating that their in vivo effects stemmed from an activation of both PPARα and γ. Finally, the capability of R-1 and S-1 to inhibit cellular proliferation in colon cancer cell lines was also evaluated.

INTRODUCTION

PPARs are ligand-dependent transcription factors belonging to the nuclear receptor superfamily. They control the expression of genes involved in fatty acid and glucose metabolism and function as cellular lipid sensors that activate transcription in response to the binding of a cognate ligand, generally fatty acids and their eicosanoids metabolites.1–5 As ligand-dependent receptors, PPARs form heterodimers with the Retinoid X Receptor (RXR) and adopt an active conformation in the presence of a ligand. Additional coregulator proteins are recruited to create a complex that binds to Peroxisome Proliferator Response Elements (PPRE) in target genes and regulates their expression.4–6

Three main PPAR subtypes have been identified: PPARα (NR1C1), PPARβ (also known as PPARδ) (NR1C2), and PPARγ (NR1C3). PPARα is mainly expressed in the liver and activates a genetic program leading to fatty acid β-oxidation. PPARβ is more ubiquitously distributed and regulates cellular functions such as fatty acid catabolism in the skeletal muscle, wound healing, and inflammation. PPARγ plays important roles in the differentiation and functions of adipocytes and macrophages with a direct impact on type 2 diabetes, dyslipidemia, atherosclerosis, and cardiovascular diseases.7,8 This receptor subtype is the target of the thiazolidinedione class of antidiabetic agents (TZDs). TZDs are PPARγ agonists whose insulin-sensitizing action is well established.9 However, as full agonists they also stimulate adipocyte differentiation in vitro and weight gain in vivo, which normally aggravates the diabetic state. Additional undesirable side effects associated with TZD treatment include fluid retention, edema/hemodilution, cardiomegaly, anemia, and increased incidence of bone fractures.10,11 As a result of the clinical observations mentioned above, emphasis has shifted to the development of partial agonists or selective PPARγ modulators (SPPARγMs). The SPPARM approach has recently attracted considerable attention because it proposes that diverse PPAR ligands, depending on their chemical structures, would bind in a distinct manner to PPARs inducing different levels of activation and distinct conformational changes of the receptor, leading to differential interactions with coactivators and corepressors.

Received: May 4, 2011
Published: November 14, 2011
Structurally diverse modulators or partial agonists, therefore, are likely to elicit different pharmacological and toxicological effects depending on the context of tissue, i.e., abundance of cofactor proteins and target gene. This may enable uncoupling of the benefits of PPAR activation from the adverse effects associated with full agonism. In agreement with the SPPARγM concept, a number of these modulators have already demonstrated desirable pharmacological profiles in various rodent models with significantly reduced side effects relative to those generally observed with existing full agonists.12–24

In a previous work,25 we reported a structural study on two enantiomeric ureidofibrate-like derivatives (Figure 1) complexed, respectively, with the ligand binding domain (LBD) of PPARγ. The R-enantiomer, R-1, behaves as a full agonist of PPARγ whereas the S-enantiomer, S-1, is a less potent partial agonist. Comparing the X-ray structures of the two complexes we argued that the partial agonist behavior of S-1 could be ascribed to a destabilization of the active conformation of helix 12 (H12). In particular, we showed that the suboptimal conformation of H12, observed in the PPARγ/S-1 complex, is probably due to a steric hindrance between the ethyl group, linked to the asymmetric carbon atom of the ligand, and the crucial residue Q286 of PPARγ situated on helix 3 (H3). The importance of the residue Q286 on the transcriptional activity of the receptor was tested by site-directed mutagenesis which confirmed its key role in the stabilization of helix 12.26 The functional relevance of this residue in determining the receptor activity of these enantiomeric ureidofibrate-like derivatives, prompted us to investigate the possibility to fine tune the activity of these ligands by modifying the substituents bound to the stereogenic center at the α position of the carboxylic group. In this work we report, therefore, the synthesis and PPARγ functional activity of derivatives 2–5 (Figure 1) in which shorter or longer substituents were introduced in place of the methyl and/or ethyl of R-1 and S-1. The functional activity of these compounds toward PPARγ, as well as PPARα and PPARδ/δ, was determined by the transactivation assay in transiently transfected human hepatoblastoma cell line HepG2 or the monkey kidney cell line COS-1. Moreover, we decided to use a calorimetric approach (ITC, DSC) to characterize PPARγ–ligand interactions including the binding affinity. As far as we know, this is the first case in which calorimetric techniques have been applied to a series of structurally related PPARγ ligands for the determination of the thermodynamic parameters associated with the formation of the receptor–ligand complexes. On the basis of these results, docking experiments and X-ray studies were performed to provide a molecular explanation for their different potency and efficacy. In addition, we evaluated several aspects of the activity of R-1 and S-1. First of all, we tested the adipogenic activity of R-1 and S-1 in 3T3-L1 adipocytes and then explored their in vivo pharmacological properties in a mouse model of obesity and insulin resistance to study the activity of these compounds on typical PPARγ and PPARα targets.

Finally, since a large body of evidence shows that PPARγ ligands exert antitumorigenic effects against a wide variety of neoplastic cells both in vivo and in vitro,27–31 we evaluated the capability of the two enantiomers R-1 and S-1 to inhibit cellular proliferation in colon cancer cell lines. However, we found that the antiproliferative activity exhibited by these ligands was only partially related to PPARγ activation.

Chemistry. The synthesis of compounds 2–5, which followed the procedure previously reported for the preparation of R-1 and S-1,26 is depicted in Scheme 1 and involved the key amine intermediates 2a–5a whose condensation with heptanoic acid in the presence of hydroxybenzotriazole (HOBT) and N,N-diisopropylcarbodiimide (DIC) afforded the corresponding amide intermediates 2b–5b. The amide group of these intermediates was reduced with 1 M borane in THF solution to give the corresponding amines. The condensation with 2-chloro-benzoxazole, followed by saponification of the ester function, led to the final acids 2–5. All acids, except 2, were obtained as colorless oils, which were transformed into sodium (R-3, S-3, and 4) or cyclohexylamine salts (R-5 and S-5) before undergoing the biological assay. The synthetic pathways of key amine intermediates 2a–5a are reported in Scheme 2. The synthesis of 2a involved the ethyl ester intermediate 2d, which was prepared by reaction of 4-bromo-phenol with acetone in the presence of CHBr3 and KOH. The condensation of this compound with N-vinylphthalimide in the presence of Pd(AcO)2, tri-o-tolyolphosphine and N,N-diisopropylethylamine in anhydrous CH2CN, followed by hydrogenation at 4 atm in the presence of Wilkinson catalyst, provided compound 2e. The hydrazinolysis of the phthalimide moiety led to the desired amine intermediate. Following the same procedure, both enantiomers of compound 5a were prepared starting from R- and S-5d, which were obtained from the condensation of 4-bromo-phenol with S- or R-methylphenyllactate, respectively, under Mitsunobu conditions. The amines 3a and 4a were prepared starting from the commercially available tiramine, which was condensed with carboxenzyloxychloride in the presence of K2CO3 to afford the N-carboxenzyloxytiramine. The condensation of this intermediate with R- or S-ethyl-lactate under Mitsunobu conditions afforded S- or R-3d, respectively, whereas its condensation with ethyl 2-bromoacetate in the presence of 95% NaH powder in anhydrous DMF provided the intermediate 4d. The hydrogenation of S- or R-3d and 4d at 5 atm in the presence of 10% Pd/C in EtOH led to the desired amines.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>R’</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-1</td>
<td>CH3</td>
<td>C2H5</td>
</tr>
<tr>
<td>S-1</td>
<td>C2H5</td>
<td>CH3</td>
</tr>
<tr>
<td>2</td>
<td>CH3</td>
<td>CH3</td>
</tr>
<tr>
<td>R-3</td>
<td>H</td>
<td>CH3</td>
</tr>
<tr>
<td>S-3</td>
<td>CH3</td>
<td>H</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>R-5</td>
<td>H</td>
<td>CH2Ph</td>
</tr>
<tr>
<td>S-5</td>
<td>CH2Ph</td>
<td>H</td>
</tr>
</tbody>
</table>

Figure 1. Ureidofibrate-like derivatives of the present study.
Both enantiomers of acids 3 and 5 had enantiomeric excesses ≥95% as determined by HPLC analysis of the chiral stationary phase (see Supporting Information).

RESULTS AND DISCUSSION

PPAR Activity. Compounds 2–5 were evaluated first for their agonist activity on the human PPARγ (hPPARγ) subtype in comparison with R-1 and S-1. For this purpose, the GAL4-PPARγ chimeric receptor was expressed in transiently transfected HepG2 cells according to a previously reported procedure.32 The results obtained are reported in Table 1 together with corresponding data for rosiglitazone used as a reference compound in the transactivation assay. The maximum induction obtained with the reference agonist was defined as 100%.

Interestingly, all new ligands were PPARγ activators even though with an intrinsic activity significantly lower than that of the full agonist R-1. The substitution of the ethyl group bound to the stereogenic center of 1 with a methyl afforded the achiral compound 2, which exhibited potency similar to that of R-1 and about five times higher than that of S-1. The introduction of a hydrogen in place of the same ethyl group gave compound 3 whose enantiomers showed stereoselective activity with R-3 about 15 times more potent than S-3, even though it was 2 times less potent than R-1. A quite good activity was obtained also with the achiral compound 4 characterized by the presence of a methylene between the phenolic oxygen and the carboxylic function; this analogue, in fact, was only 11 times less potent than R-1. Finally, the two stereoisomers of compound 5 were tested; this derivative was investigated by analogy with previously reported phenoxyalkanoic acid PPAR agonists bearing a benzyl group at α position of the carboxylic group.32–35 Both R-5 and S-5 displayed a fairly good potency although with the lowest efficacy of the series. For this compound, a small stereoselectivity favorable to the S-isomer was observed.

In order to obtain a more complete pharmacological characterization, compounds 2−5 were evaluated also for their agonist activity on human PPARα and PPARβ/δ subtypes. R-1 and S-1 were assayed only on PPARα given their previously reported inactivity on the PPARβ/δ subtype.25 The results obtained are
Table 1. Activity of the Tested Compounds in Cell-Based Transactivation Assay*

<table>
<thead>
<tr>
<th>compd</th>
<th>PPARα EC_{50} (μM)</th>
<th>PPARγ EC_{50} (μM)</th>
<th>PPARδ EC_{50} (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-1</td>
<td>0.003 ± 0.001</td>
<td>0.07 ± 0.05</td>
<td>ia</td>
</tr>
<tr>
<td>S-1</td>
<td>0.056 ± 0.034</td>
<td>0.59 ± 0.11</td>
<td>ia</td>
</tr>
<tr>
<td>2</td>
<td>0.030 ± 0.016</td>
<td>0.11 ± 0.06</td>
<td>ia</td>
</tr>
<tr>
<td>R-3</td>
<td>0.025 ± 0.017</td>
<td>0.15 ± 0.06</td>
<td>ia</td>
</tr>
<tr>
<td>S-3</td>
<td>0.620 ± 0.260</td>
<td>2.30 ± 1.00</td>
<td>ia</td>
</tr>
<tr>
<td>4</td>
<td>0.122 ± 0.058</td>
<td>0.80 ± 0.40</td>
<td>ia</td>
</tr>
<tr>
<td>R-5</td>
<td>1.720 ± 0.950</td>
<td>2.70 ± 1.00</td>
<td>ia</td>
</tr>
<tr>
<td>S-5</td>
<td>ia</td>
<td>1.70 ± 0.80</td>
<td>ia</td>
</tr>
<tr>
<td>Wy-14,643</td>
<td>1.6 ± 0.3</td>
<td>1.00 ± 0.10</td>
<td>ia</td>
</tr>
<tr>
<td>rosiglitazone</td>
<td>ia</td>
<td>0.02 ± 0.01</td>
<td>ia</td>
</tr>
<tr>
<td>L-165,041</td>
<td>ia</td>
<td>ia</td>
<td>ia</td>
</tr>
</tbody>
</table>

*Efficacy values were calculated as a percentage of the maximum obtained fold induction with the reference compounds. These values correspond to those previously obtained as reported in ref 25.

Table 2 shows that both ΔH and TΔS values for tested compounds 1–4 were favorable to the binding to PPARγ isofrom. The association of the ligands was enthalpy-driven at 25 °C, showing that van der Waals interactions and H-bonds played an important role in the binding. The only exception

Figure 2. DSC thermograms of PPARγ-LBD in the presence and absence of the ligands of the present study.

The next step was the determination of thermodynamic parameters relating to the formation of the complexes PPARγ-LBD/ligand by isothermal titration calorimetry (ITC). This technique, by measuring the heat absorbed or released by titrating the protein with a ligand at constant temperature, yields the stoichiometry of the reaction, the binding enthalpy, and the affinity constant.

The result of a typical ITC experiment is shown in Figure 3 for binding of R-3. In the upper panel, the heat pulses observed upon addition of the ligand to PPARγ are plotted as a function of the injection order. The area of the pulses decreases progressively until it reaches a constant value due to complete saturation of the receptor binding sites. The lower panel shows the integrated heats of reaction plotted against the molar ratio of total ligand concentration to total oligomeric protein concentration, and, superimposed, the simulated curve obtained by the best fitting of the data according to the “one binding site” model. The stoichiometry of ligand binding was generally as expected, with the low accuracy of some results probably due to errors in the active protein concentration.

The next step was the determination of thermodynamic parameters relating to the formation of the complexes PPARγ-LBD/ligand by isothermal titration calorimetry (ITC). This technique, by measuring the heat absorbed or released by titrating the protein with a ligand at constant temperature, yields the stoichiometry of the reaction, the binding enthalpy, and the affinity constant.

The result of a typical ITC experiment is shown in Figure 3 for binding of R-3. In the upper panel, the heat pulses observed upon addition of the ligand to PPARγ are plotted as a function of the injection order. The area of the pulses decreases progressively until it reaches a constant value due to complete saturation of the receptor binding sites. The lower panel shows the integrated heats of reaction plotted against the molar ratio of total ligand concentration to total oligomeric protein concentration, and, superimposed, the simulated curve obtained by the best fitting of the data according to the “one binding site” model. The stoichiometry of ligand binding was generally as expected, with the low accuracy of some results probably due to errors in the active protein concentration.

Table 2 shows that both ΔH and TΔS values for tested compounds 1–4 were favorable to the binding to PPARγ isofrom. The association of the ligands was enthalpy-driven at 25 °C, showing that van der Waals interactions and H-bonds played an important role in the binding. The only exception
As far as the binding affinity was concerned, the results \(K_d\) for R-1, S-1, and rosiglitazone were in good accordance with the previously reported data of \(K_d\) obtained by the scintillation proximity assay (SPA), that is, 0.088 \(\mu\)M, 0.971 \(\mu\)M, and 0.074 \(\mu\)M, respectively.\(^{25}\) Importantly, the affinity data for the enantiomers of compound 3 confirmed a stereoselectivity favorable to the R-isomer. Thus, the ITC technique could represent a very useful alternative to SPA given that it avoids the use of radio-ligands and is less costly.

Molecular Modeling and X-ray Studies. The analysis of the binding affinity of achiral compounds 2 and 4 showed that their \(K_d\) values did not correlate well with the activity. Ligand 2, in particular, was one of the most potent agonists of the series despite its low affinity. To gain more details on the interactions of PPAR\(\gamma\) with the partial agonists S-1, 2, and 4 endowed with different potency, an approach that combined molecular docking and X-ray studies was performed.

To this end, the crystal structure of the PPAR\(\gamma\) complexed with the ligand 2 was solved (PDB code: 3R81) and successively compared to that of the complexes PPAR\(\gamma\)/R-1\(^{25}\) (PDB code: 2I4J) and PPAR\(\gamma\)/S-1\(^{25}\) (PDB code: 2I4P). Interestingly, the analysis of the structures revealed three different orientations of the carboxylate group that can be ascribed only to the differences of the substituents on the carbon atom in \(\alpha\) position. As illustrated in Figure 4a, both oxygens of the carboxylate group of 2 are involved in H-bonds with Y473, H323, and H449. This arrangement is more similar to the canonical H-bonding network realized by the potent full agonist R-1 (Figure 4b), which also has both oxygens engaged in H-bonds with the triad. On the contrary, only one oxygen of S-1 (Figure 4c) is engaged in H-bonds with the above residues because of the steric clash between the ethyl group on the asymmetric carbon atom and the residue Q286 on helix 3 that forced the ligand to move away from helix 12 provoking a distorted and less efficacious interaction with this helix.\(^{25}\) Moreover, 2 lacks the H-bond with S289, whereas its benzoazole N atom establishes a H-bond with C285 of helix 3. A water molecule creates a H-bridge between the benzoazole O atom and the NH backbone of S342 belonging to the \(\beta\)-sheet. Further hydrophobic contacts with the \(\beta\)-sheet of the receptor are realized by the long aliphatic chain of 2.

To predict the plausible interactions between compound 4 and PPAR\(\gamma\), molecular docking studies were carried out using the crystal structure of PPAR\(\gamma\)/2 complex. The ligand–receptor complex was predicted through the automated docking software GOLD 5.0.\(^{36}\) which in several studies was shown to yield better performances compared to those of other similar programs.\(^{37}\) The GoldScore-CS docking protocol was adopted in this study.\(^{38,39}\) In this protocol, the poses obtained with the original GoldScore function were rescored and reranked with the GOLD implementation of the ChemScore function.\(^{38,39}\)

![Figure 3. Binding of R-3 to PPAR\(\gamma\)-LBD. The upper panel shows the raw data of a representative ITC experiment. The lower panel shows the corresponding binding isotherm fitted according to the "one binding site" model.](image)

Table 2. Thermodynamic Parameters Relating to the Formation of the Complexes PPAR\(\gamma\)-LBD/Ligand Determined by the ITC Assay\(^{40}\)

<table>
<thead>
<tr>
<th>ligand</th>
<th>(n)</th>
<th>(K_d) ((\mu)M)</th>
<th>(\Delta G) (kcal/mol)</th>
<th>(\Delta H) (kcal/mol)</th>
<th>(T\Delta S) (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R-1</td>
<td>0.92 ± 0.01</td>
<td>0.27</td>
<td>-8.9</td>
<td>-4.3 ± 0.07</td>
<td>-4.6</td>
</tr>
<tr>
<td>S-1</td>
<td>0.57 ± 0.07</td>
<td>2</td>
<td>-7.8</td>
<td>-1.1 ± 0.04</td>
<td>-6.7</td>
</tr>
<tr>
<td>2</td>
<td>1.08 ± 0.04</td>
<td>4.5</td>
<td>-7.3</td>
<td>-4.1 ± 0.02</td>
<td>-3.2</td>
</tr>
<tr>
<td>R-3</td>
<td>0.22 ± 0.01</td>
<td>1.5</td>
<td>-8.0</td>
<td>-4.5 ± 0.19</td>
<td>-3.5</td>
</tr>
<tr>
<td>S-3</td>
<td>0.31 ± 0.01</td>
<td>3.3</td>
<td>-7.5</td>
<td>-5.8 ± 0.02</td>
<td>-1.7</td>
</tr>
<tr>
<td>4</td>
<td>0.63 ± 0.03</td>
<td>7.7</td>
<td>-7.0</td>
<td>-5.7 ± 0.04</td>
<td>-1.3</td>
</tr>
<tr>
<td>rosiglitazone</td>
<td>0.43 ± 0.01</td>
<td>0.12</td>
<td>-9.4</td>
<td>-5.9 ± 0.08(^{40})</td>
<td>-4.4</td>
</tr>
</tbody>
</table>

\(^{40}\)n = molar binding ratio of the ligand–protein interaction (observed stoichiometry). \(^{41}\)This value was kept fixed during the fitting by Origin.
To test the validity of this protocol for the PPAR system, the crystallized conformation of ligand 2 was first docked back into its binding site. In this docking run, the 200 poses produced by GOLD resulted in only one prevailing cluster on the basis of their conformations: 43 of the poses closely resembled the crystallized conformation with a heavy atom root-mean-square deviation (rmsd) ranging from 0.9 to 2.3 Å. ChemScore was able to rank 25 out of the 43 poses from this cluster as the highest ranked 25 poses. Figure 1 of Supporting Information shows the comparison between the predicted docked conformation of 2 and the one observed in the crystal structure (rmsd = 1.91 Å). Thus, this docking protocol was considered to be suitable for the subsequent docking runs for compound 4.

When 4 was docked within the PPARγ binding site, about 70% of the conformations generated by GOLD adopted only one highly conserved orientation lying in the same region occupied by R-1, S-1, and 2. As can be seen in Figure 4d, ligand 4 loses the H-bond with both H323 and S289 side chains as its carboxylate group assumes a different conformation with respect to 2, R-1, and S-1. Moreover, the long aliphatic chain and the benzoxazole ring of the ligand occupy the upper and lower parts of the distal cavity, respectively, there making hydrophobic contacts with the surrounding protein residues. In particular, the benzoxazole moiety of the ligand contacts the side chain of I341 belonging to the β-sheet.

As reported in Table 1, the potency of 2 is higher than that of both S-1 and 4 on the same receptor. This behavior can be interpreted at the molecular level by the more efficient H-bonding network realized by the carboxylate of 2, with particular regard to H12. A similar arrangement has been observed in the crystal complex of PPARγ with the more potent R-125 (Figure 4b). As shown in Figure 5, R-1 and 2 interact in a similar way with Y473 of H12, while S-1 forces the side-chain of the tyrosine to assume a different orientation, probably less efficacious for a good stabilization of this helix. On the contrary, the less potent S-1 and 4, forming a less effective H-bonding network, weakly contribute to the H12 stabilization.

As far as the affinity is concerned, a good correlation with the potency can be observed in the case of the chiral compounds, where the R-enantiomers show higher affinity and potency with respect to the S-enantiomers. This correlation is not so evident for the achiral compounds 2 and 4, where the higher potency, compared to that of other compounds of the series, could depend on the better stabilization of H12, as seen in the crystal structure of 2. As a general rule, the affinity across the series is also driven by the “hydrophobic effect” which affects the entropic term. Moreover, our molecular modeling and X-ray studies show that the partial agonism of the ligands S-1, 2, and

Figure 4. H-bond network of compounds 2 (a, green), R-1 (b, white), and S-1 (c, yellow) in the crystal complex with PPARγ represented as a slate blue ribbon model. (d) Compound 4 (magenta) docked into the PPARγ binding site. Only amino acids involved in the H-bonding network with the ligand are displayed (white) and labeled. H-bonds discussed in the text are depicted as dashed black lines.

Figure 5. Superposition of the crystal structures of PPARγ in complex with R-1 (white), S-1 (yellow), and 2 (green).
4 toward PPARγ is in accordance with a better stabilization of H3 and/or the β-sheet, as discussed extensively in previous works.25,26

Adipogenic and in Vivo Activities. We first verified whether R-1 and S-1 were able to induce adipocyte differentiation of 3T3-L1 mouse fibroblasts, as PPARγ is a key determinant in this process. As shown in Figure 6A, both R-1 and S-1 increased the expression of PPARγ target genes like fatty acid binding protein 4 (Fabp4), the insulin sensitive glucose transporter (Glut4), and adiponectin (Acrp30), which are typically increased in differentiated adipocytes and represent adipose markers. Furthermore, we observed that these ligands induced lipid accumulation as a consequence of differentiation to adipocytes (Figure 6C). In particular, the quantitation of lipid content confirmed that cells differentiated in the presence of R-1 or S-1 and accumulated lipids to a level similar to that observed with the classical differentiation cocktail containing insulin, dexamethasone and IBMX or with the PPARγ full agonist rosiglitazone (Figure 6B).

Having ascertained that both R-1 and S-1 induced the adipogenic program in a PPARγ-dependent manner, we decided to explore the in vivo pharmacological properties by administering the two ligands to a mouse model of insulin resistance induced by the diet. Mice were fed a high fat diet for 16 weeks and then were treated with R-1 (10 mg/kg/day), S-1 (25 mg/kg/day), or the PPARγ agonist rosiglitazone (10 mg/kg/day) for 2 weeks. At the end of the treatment, the body weight of mice treated with R-1 was significantly decreased (12% reduction) as compared to control mice (HFD) (Figure 7A). The body weight of mice on rosiglitazone was similar to that of the control group. In this respect, the decreased body weight observed with R-1 and the reduced visceral fat obtained with both the R- and S-enantiomers represent an advantage versus rosiglitazone, whose administration is usually associated with increased adipogenesis and body weight in diabetic patients.30 In a Gal4-based assay, we had previously shown that both R-1 and S-1 are dual PPARα/γ ligands;25 therefore, to confirm their behavior as PPARγ ligands, we measured the expression of target genes in the liver of these mice and found that the mRNA levels of the mitochondrial medium-chain acyl-CoA dehydrogenase (Acadm), long-chain acyl-CoA dehydrogenase (Acadl), and of the peroxisomal acyl-CoA oxidase 1 (Acox1) were significantly increased by both enantiomers (Figure 2A of Supporting Information). In parallel, the liver weight of mice treated with R-1 and S-1 rose as compared to that of the control mice (Figure 2B of Supporting Information). This effect is typically observed in rodents treated with fibrates and PPARα agonists as confirmed in the group of mice on fenofibrate (Figure 2B of Supporting Information).41,42

High body weight and increased content of visceral fat have been recognized as risk factors for insulin resistance.33,34 The improvement of morphometric parameters and the decreased visceral fat observed in mice treated with the two enantiomers suggest that the metabolic profile of these mice could have benefited from the administration of R-1 or S-1. In fact, the levels of circulating triglycerides, nonesterified fatty acids (NEFA), glucose, and insulin were reduced with both R-1 and S-1 (Figure 8). Cholesterol levels were not affected by any of the tested ligands (data not shown). The changes of the metabolic profile elicited by the two enantiomers indicated that these ligands might be insulin sensitizers in vivo. To test this hypothesis, we carried out the oral glucose tolerance test and the insulin tolerance test, two standard assays widely used to assess insulin resistance and basal insulin sensitivity by following the evolution of glucose levels after a glucose load or insulin injection, respectively.45 We found that mice on R-1 were able to improve the glucose clearance upon an oral load as compared to control (HFD) mice (Figure 9A and inset). Conversely, the glucose clearance following the oral load in mice on S-1 was slightly improved but did not reach the statistical significance (Figure 9A and inset). Similarly, the insulin-induced increase in glucose disposal rate was significantly higher in mice treated with R-1, suggesting increased insulin sensitivity in this group of mice, while the curve with the S-enantiomer was improved, but the difference with the control group was not statistically significant (Figure 9B and inset). It should be mentioned, however, that S-1, although to a lesser extent than R-1, reduced the circulating levels of glucose and insulin in fasted mice, reflecting the beneficial outcome of PPARγ stimulation in vivo with the S-enantiomer. In fact, the calculation of the homeostatic model assessment of insulin resistance (HOMA-IR), an index of insulin resistance, shows that R-1 and S-1 decreased insulin resistance (Figure 9C) consistent with the reduced plasma levels of glucose and insulin achieved with these two PPARγ ligands (Figure 8). Notably, by using a combination of structural studies with techniques to examine the selective coregulator recruitment, we have recently shown that S-1 is a partial agonist of PPARγ able to recruit a different set of coregulators as compared to the R-enantiomer.26 On the basis of these molecular approaches, we proposed that this ligand may be a SPPARγ/M. Yet, since S-1, as well as R-1, also activates PPARα, it is likely that the pharmacological profile obtained with these two ligands may arise from the combined action on these two receptor subtypes. It should be mentioned that, unlike selective PPARγ agonists, it is well-known that dual PPARα/γ agonists do not show weight gain in rodent models of diabetes.46 It will be interesting in the future to test in cell and animal models whether S-1 is able to uncouple the improved metabolic profile from the side effects usually observed in patients treated with thiazolidinediones.47

Effects on Cell Proliferation. Next step in this study was to evaluate the antitumor effects of R-1 and S-1 in colon cancer cell lines. We chose these compounds with the aim of examining if there was difference, with regard to this type of activity, between full and a partial PPARγ agonists. In fact, clinical trials on the full agonists TZDs as antineoplastic agents have shown, so far, conflicting results, justifying the need to further investigate the anticancer potential of PPARγ agonists.48 The first step was the Western blot analysis of PPARγ expression in our in vitro panel. The three cell lines utilized in this study (HT-29, LoVo, and HCT15) showed highly expressed PPARγ. This expression profile was in support of the use of these cells for our study and confirmed the existence of the PPARγ signaling system in such malignant cells (Figure 10). The capability of R-1 and S-1 to inhibit tumor cell growth was analyzed using the full PPARγ agonist troglitazone as a reference compound. All cell lines were incubated for 1 and 2 days with each compound at various
concentrations (range 1–100 μM); the cell growth inhibition was analyzed by the MTT assay, and the IC\textsubscript{50} was determined. A cell proliferation inhibition in dose- and time-dependent manner was observed. After one day of drug exposure, a cell growth inhibition was obtained with IC\textsubscript{50} higher than 100 μM (data not shown). The inhibitory effects were significantly

Figure 6. Expression of PPARγ target genes and lipid accumulation in murine adipocytes. (Panel A) 3T3-L1 mouse fibroblasts were differentiated in the presence of the indicated treatments. Total RNA was extracted, and the expression of Fabp4, Glut4 and Acrp30 was measured by real time qPCR. ctrl, control samples; Ins, samples treated with 5 μg insulin·mL-1; I/D/I, samples treated with 10 μg insulin·mL-1, 1 μM dexamethasone, and 0.5 mM IBMX; Rosi, 1 μM rosiglitazone; R-1, 1 μM R-1; S-1, 1 μM S-1. Data are expressed as the mean ± SD of triplicate samples. (Panel B) Spectrophotometric quantification of lipid content after solvent extraction of Oil Red O from mouse adipocytes differentiated in the presence of the indicated treatments. Results are expressed as the mean ± SD (n = 4). (**) and (***) indicate statistical significance at p < 0.01 and p < 0.001, respectively. (Panel C) 3T3-L1 mouse fibroblasts were differentiated to adipocytes in the presence of the indicated treatments. Cells were stained with Oil Red O, and pictures were taken with an Axiovert 200 microscope at 20× magnification.
increased when cells were treated for 2 days; in this case, in all cell lines IC₅₀ ranged between 17 and 65 μM with R-1 and S-1, which were more potent than troglitazone on LoVo and HCT15 cells. As shown in Table 3, however, no significantly different anti-proliferative activity was observed between the two enantiomers.

To investigate if the cell growth inhibition occurred through PPARγ activation, tumor cell lines were incubated for 48 h with each of the enantiomers (IC₅₀) and/or the potent PPARγ antagonist 6 (GW9662) (20 μM). Compound 6 is itself an inhibitor of cell proliferation, but it acts by a PPARγ-independent mechanism. Cell viability was analyzed by the MTT assay, and in two of the investigated cell lines, 6 neither inhibited cell proliferation nor reversed growth inhibition induced by R-1 and S-1 (data not shown); our ligands, in fact, still induced cell growth suppression, even though PPARγ was blocked. In such experimental conditions, only HT-29

Figure 7. Effect of PPARγ ligands on body weight and visceral fat content in HFD fed mice. Six weeks old C57Bl/6J male mice were fed a high fat diet for 16 weeks and subsequently were treated with the indicated ligands for two weeks as detailed in the Experimental Section. (Panel A) Body weight of mice at the end of the treatments (6 mice/treatment group). (Panel B) Quantification of visceral fat by MRI of total body fat; results are expressed as the percentage of visceral fat area on the total image (the MRI analysis was performed on 3 mice/treatment group). (Panel C) representative image of MRI performed on mice treated with the indicated ligands. (**) and (***) indicate statistical significance at p < 0.01 and p < 0.001, respectively.

Figure 8. Plasma levels of glucose, lipids, and hormones in HFD mice treated with PPARγ ligands. The quantification of plasma levels of triglycerides (panel A), NEFA (panel B), glucose (panel C), and insulin (panel D) was performed on the same mice described in Figure 7 treated with the indicated ligands. (*), (***), and (***) indicate statistical significance at p < 0.05, p < 0.01, and p < 0.001, respectively.
cells showed about 40% loss of viability in response to 6. Co-treatment of these cells with each of the enantiomers and 6, instead, resulted in a recovery of proliferation, and this effect was much more evident when 6 was added to R-1 than to S-1 (Figure 11A). This data suggests the direct involvement of PPARγ in mediating the antiproliferative activity of R-1 and S-1 in HT-29 cells. In the case of R-1, however, the complete recovery of proliferation allows one to hypothesize a simultaneous interference from R-1 and, partially, S-1 in the pathway responsible for the cytotoxicity of 6, which, as already mentioned, acts by a PPARγ-independent mechanism. This could explain why, under cotreatment conditions, 6 did not exhibit any growth inhibition. Further investigations in this field are in progress.

To evaluate which phase all the cell lines investigated were blocked in, we examined the cell cycle by flow cytometry analysis. Compared to control cells, an increase of the G0/G1 phase was observed, as shown in Figure 11B for HT-29, after treatment with R-1 and S-1, at different times, suggesting that our ligands reduced tumor cell growth via G0/G1 cell arrest. Next, we verified if the G0/G1 block in HT-29 was mediated by PPARγ activation. Flow cytometry of cell cycle revealed that the activity of R-1 and S-1 on HT-29 was altered when these cells were simultaneously treated with the PPARγ antagonist 6. In particular, the G0/G1 block induced by S-1, which appeared after 2 days of treatment, was resumed by 6. Differently, R-1 blocked the cells already after 1 day, and this block was persistent after 48 h. In this case, the presence of 6 allowed the cells to recover the baseline rate of cell cycle progression after 1 day, whereas no response to 6 was observed after 2 days.
under the same conditions suggesting that this effect could be only partially related to PPARγ activation in this cell line (Figure 11B).

Finally, we evaluated if R-1 and S-1 could effectively induce apoptosis in the HT-29 cell line. For this purpose, these cancer cells were treated with both enantiomers and troglitazone for 24 and 48 h at the corresponding IC50 concentrations. Fluorescein isothiocyanate-conjugated annexin V was utilized to detect the externalization of phosphatidylserine that occurs at an early stage of apoptosis. Propidium iodide was used as a marker of necrosis due to cell membrane destruction. As shown in Figure 12, all the compounds effectively induced apoptosis in a time-dependent manner.

CONCLUSIONS

A short series of ureidofibrate-like derivatives endowed with PPARγ activity was prepared by modifying the substituents at α position of the carboxylic group. The use of calorimetric techniques (DSC, ITC) turned out to be a valuable approach for the determination of the thermodynamic parameters associated with the formation of the receptor–ligand complexes. The behavior of some compounds of the series was rationalized by performing docking experiments and X-ray studies which provided a molecular explanation for their different potency and efficacy. Different aspects of the biological activity of the full and partial agonists R-1 and S-1, respectively, were also evaluated. On the basis of the results obtained in cultured adipocytes and in HFD mice, we conclude that the two enantiomers activate PPARγ target genes and have profound effects on the metabolic profile in vivo. These ligands also activate PPARα in the liver, and this is likely to contribute to their pharmacological profile. The two enantiomers improved morphometric and metabolic parameters and reduced insulin resistance most likely as a consequence of decreased body weight and visceral fat, which are usually associated with insulin resistance and type 2 diabetes.43,44 Furthermore, our data obtained in different colon cancer cell

Figure 11. (Panel A) PPARγ activation involvement in cell growth inhibition by R-1 and S-1. HT-29 cells were incubated, for two days, with each of the enantiomers (IC50) and/or 6 (20 μM), and the cell growth modulation was analyzed by MTT assay as described in the Experimental Section. (Panel B) Cell cycle modulation. HT-29 cells were incubated, for one and two days, with each of the enantiomers R-1 and S-1 (IC50) and/or 6 (20 μM), and the cell cycle was analyzed by flow cytometry. The reported G0/G1 phase percentages are the means of three different experiments ± SD. Significance of the differences was p < 0.05 (*).

Figure 12. Apoptotic effect of S-1 and R-1. HT-29 cells were treated for 2 days with S-1 or R-1 or troglitazone at the corresponding IC50 concentration. Apoptosis detection was performed by Annexin V-FITC staining assays and propidium iodide (PI), in accordance with the manufacturer’s instructions followed by FACS analysis. The histogram represents the mean ± SEM of apoptosis rates obtained from three independent experiments.
lines indicate that these two stereoisomers not only potently inhibit cell growth, even though by a mechanism of action only partially related to PPARγ activation, but also effectively induce apoptosis in cancer cells. Collectively, the results of this preliminary integrated study allow one to claim that R-1 and S-1 represent dual PPARα/γ ligands with promising biological effects in cellular systems and in an animal model of insulin resistance and could stand, therefore, as leads for the development of new molecules for the treatment of type 2 diabetes and/or cancer.

EXPERIMENTAL SECTION

Chemical Methods. Column chromatography was performed on ICN silica gel 60 A (63–200 μm) as a stationary phase. Melting points were determined in open capillaries on a Gallenkamp elecithermal apparatus and are uncorrected. Mass spectra were recorded with a HP GC/MS 6890-5973 MSD spectrometer, electron impact 70 eV, equipped with HP chemstation. For GC/MS analysis of acid analytes, the corresponding methyl esters, obtained by reaction with a solution of diazomethane in Et2O, were used. 1H NMR spectra were recorded in CDCl3 on a Varian-Mercury 300 (300 MHz) spectrometer at room temperature. The enantiomeric excesses of the final acids were determined by HPLC analysis on Chiralcel OD column (4.6 mm i.d. × 250 mm, Daicel Chemical Industries, Ltd., Tokyo, Japan). Analytical liquid chromatography was performed on a PE chromatograph equipped with a Rhodyne 7725i model injector, a 785A model UV/vis detector, a series 200 model pump, and an NCI 900 model interface. Chemicals were obtained from Aldrich (Milan, Italy), Lancaster (Milan, Italy), or Acros (Milan, Italy) and were used without any further purification.

Preparation of Methyl or Ethyl 2-(4-(2-Heptanoylaminoo-ethyl)phenoxy)-α-substituted-ethanoate (2b–5b). Heptanoic acid (9.00 mmol), HOBt·H2O (3.00 mmol), and DIC (11.25 mmol) were added to a solution of the appropriate compound 2a–5a (6.00 mmol) in CH2Cl2 (50 mL). The reaction mixture was stirred for 15 h at room temperature. The organic phase was washed with Na2SO4 saturated solution, 1 N HCl, and brine, then dried over Na2SO4 and filtered. The solvent was evaporated to dryness affording a yellow solid residue which was chromatographed on a silica gel column (petroleum ether/ethyl acetate 9:1 as eluent) to give the desired compounds in 70–77% yield.

Preparation of the Final Compounds 2–5. A solution of the corresponding alkyl ester 2c–5c (0.85 mmol), obtained from the previous steps, in EtOH (10 mL) and 1 N NaOH (5 mL) was stirred for 5 h at room temperature. The organic layer was dissolved in THF, filtered, and evaporated to dryness affording the title compounds in quantitative yields as a white solid (2) or colorless oils (4, both enantiomers of 3 and 5). The oily acids were transformed into the corresponding sodium (R-3, S-3, and 4) or cyclohexylamine salts (R-S and S-S). For this purpose, to a solution of the appropriate acid (1.5 mmol) in 5% EtOH (20 mL) was added NaHCO3 (1.5 mmol) or cyclohexylamine (2.0 mmol). The reaction mixture was stirred overnight at rt. The solvent was evaporated to dryness to give the desired salts as white solids, which were recrystallized by the suitable solvent. 2-(4-(N-Heptyl-N-(benzoxazol-2-yl)amino-ethyl)phenoxy)-3-phenyl-propanoic Acid (2). White solid, 52% yield (CHCl3/n-hexane).

Preparation of the Methyl 2-(4-Bromo-phenoxy)-2-methyl-propanoic Acid (2d). A solution of KOH (2.92 g, 5.21 mmol) in THF (20 mL), cooled to 0 °C, and added with N(Et)3 (0.2 mL) and a solution of 2-chlorobenzoazoxole (2.20 mmol) in anhydrous THF (5 mL). The resulting reaction mixture was stirred for 0.5 h at 0 °C, 0.5 h at room temperature, 2 h at reflux, and 15 h at room temperature. The organic solvent was evaporated to dryness affording a solid residue which was chromatographed on a silica gel column (petroleum ether/ethyl acetate 9:1 as eluent) to give the title compounds in 42–71% yield.

Preparation of Methyl 2-(4-(N-Heptyl-N-(benzoxazol-2-yl)amino-ethyl)-phenoxy)-2-methyl-propanoic Acid (2e). Colorless oil, 71% yield.

Preparation of Methyl 2-(4-[2-(N-Heptyl-N-(benzoxazol-2-yl)amino-ethyl)]-phenoxy)-propanoic Acid (2f). Colorless oil, 45% yield.

Preparation of Methyl 2-(4-(N-Heptyl-N-(benzoxazol-2-yl)amino-ethyl)-phenoxy)-propanoic Acid (2g). Colorless oil, 42% yield.

Ethyl 2-(4-(N-Heptyl-N-(benzoxazol-2-yl)amino-ethyl)-phenoxy)-ethanoate (4c). Yellow oil, 47% yield.

Preparation of Methyl 2-(4-[2-(N-Heptyl-N-(benzoxazol-2-yl)amino-ethyl)]-phenoxy)-3-phenyl-propanoic Acid (5c). Colorless oil, 66% yield.

Preparation of Methyl 2-(4-(N-Heptyl-N-(benzoxazol-2-yl)amino-ethyl)-phenoxy)-3-phenyl-propanoic Acid (5d). Colorless oil, 61% yield.

Preparation of Methyl 2-(4-(N-Heptyl-N-(benzoxazol-2-yl)amino-ethyl)-phenoxy)-3-phenyl-propanoic Acid (5e). White solid, 70% yield (AcOEt/CHCl3).

Preparation of Methyl 2-(4-(N-Heptyl-N-(benzoxazol-2-yl)amino-ethyl)-phenoxy)-3-phenyl-propanoic Acid (5f). White solid, 70% yield (AcOEt/CHCl3).

Preparation of Methyl 2-(4-(N-Heptyl-N-(benzoxazol-2-yl)amino-ethyl)-phenoxy)-3-phenyl-propanoic Acid (5g). White solid, 54% yield (AcOEt/CHCl3).

Preparation of Methyl 2-(4-(N-Heptyl-N-(benzoxazol-2-yl)amino-ethyl)-phenoxy)-3-phenyl-propanoic Acid (5h). White solid, 49% yield (CHCl3/n-hexane).

Preparation of Methyl 2-(4-(N-Heptyl-N-(benzoxazol-2-yl)amino-ethyl)-phenoxy)-3-phenyl-propanoic Acid (5i). White solid, 45% yield (CHCl3/n-hexane).

Preparation of Methyl 2-(4-(N-Heptyl-N-(benzoxazol-2-yl)amino-ethyl)-phenoxy)-3-phenyl-propanoic Acid (5j). Yellow solid, 52% yield (AcOEt/CHCl3).

Preparation of Methyl 2-(4-(N-Heptyl-N-(benzoxazol-2-yl)amino-ethyl)-phenoxy)-3-phenyl-propanoic Acid (5k). White solid, 45% yield (AcOEt/CHCl3).

Preparation of Methyl 2-(4-(N-Heptyl-N-(benzoxazol-2-yl)amino-ethyl)-phenoxy)-3-phenyl-propanoic Acid (5l). Yellow solid, 70% yield (AcOEt/CHCl3).

Preparation of Methyl 2-(4-(N-Heptyl-N-(benzoxazol-2-yl)amino-ethyl)-phenoxy)-3-phenyl-propanoic Acid (5m). White solid, 70% yield (AcOEt/CHCl3).

Preparation of Methyl 2-(4-(N-Heptyl-N-(benzoxazol-2-yl)amino-ethyl)-phenoxy)-3-phenyl-propanoic Acid (5n). White solid, 52% yield (AcOEt/CHCl3).

Preparation of Methyl 2-(4-(N-Heptyl-N-(benzoxazol-2-yl)amino-ethyl)-phenoxy)-3-phenyl-propanoic Acid (5o). White solid, 34% yield (CHCl3/n-hexane).

Preparation of Methyl 2-(4-(N-Heptyl-N-(benzoxazol-2-yl)amino-ethyl)-phenoxy)-3-phenyl-propanoic Acid (5p). White solid, 29% yield (AcOEt/CHCl3).

Preparation of Methyl 2-(4-(N-Heptyl-N-(benzoxazol-2-yl)amino-ethyl)-phenoxy)-3-phenyl-propanoic Acid (5q). White solid, 29% yield (AcOEt/CHCl3).

Preparation of Methyl 2-(4-(N-Heptyl-N-(benzoxazol-2-yl)amino-ethyl)-phenoxy)-3-phenyl-propanoic Acid (5r). White solid, 29% yield (AcOEt/CHCl3).
eluent) affording the desired acid as a pale yellow solid in 70% yield. A solution of this acid (5 mmol) in MeOH (20 mL) and two drops of concd H2SO4 was stirred for 3 h at reflux, then the solvent was distilled off, and the residue was dissolved in ethyl acetate. The resulting solution was washed with NaHCO3 saturated solution and brine, then the organic phase was dried over Na2SO4, and the solvent was removed under reduced pressure to give the title compound as a pale yellow oil in quantitative yield.

Preparation of S- or R-Methyl 2-(4-bromo-phenoxy)-3-phenyl-propanoate (5d). A solution of diisopropylazodicarboxylate (DIAD, 2.81 g, 13.90 mmol) in anhydrous toluene (20 mL) was added dropwise to an ice-bath cooled mixture of R- or S-methyl phenylacetyl (2.51 g, 13.87 mmol), 4-bromophenol (2.45 g, 13.89 mmol), and triphenylphosphine (3.64 g, 13.88 mmol) in anhydrous toluene (50 mL). The reaction mixture was stirred at room temperature overnight, under N2 atmosphere. Toluene was evaporated in vacuo, and a mixture of Et2O and hexane (50 mL, 1:1) was added to the residue. The resulting precipitate was filtered off, and the filtrate was evaporated to dryness. The residue was chromatographed on a silica gel column (petroleum ether/ethyl acetate 9:1 as eluent) affording the desired compound as a colorless oil in 76% yields.

Preparation of Methyl 2-[4-(2-Phthalimido-2-yl-ethen)-phenoxy]-2-methyl- or 3-Phenyl-propanoate. A solution of 2d or S- or R-5d (6.0 mmol), tri-o-tolyphosphine (0.50 mmol), N-vinylphthalimide (60 mmol), and N,N-disopropylethylamine (9.5 mmol) in anhydrous CH2CN (15 mL) was added, under N2 atmosphere, to a suspension of Pd(OAc)2 (0.20 mmol) in the same anhydrous solvent (3 mL). The reaction mixture was stirred for 24 h at reflux, then the organic solvent was evaporated in vacuo, and CH2Cl2 (20 mL) was added to the residue. The precipitate was filtered off through a Celite pad, washed four times with CH2Cl2 (20 mL), and the filtrate was washed with brine and dried over Na2SO4. The solvent was evaporated to dryness affording the desired acid as a yellow oil, which was chromatographed on silica gel column (petroleum ether/ethyl acetate 9:1 as eluent) to give the title compound as a yellow solid, in 75–89% yield, which was used in the next step without any further purification.

Preparation of Methyl 2-[4-(2-Phthalimido-2-yl-ethen)-phenoxy]-2-methyl-propanoate. 89% yield. **Preparation of R-Methyl 2-[4-(2-Phthalimido-2-yl-ethen)-phenoxy]-3-phenyl-propanoate.** 87% yield.

Preparation of Methyl 2-[4-(2-Phthalimido-2-yl-ethyl)-phenoxy]-2-methyl- or 3-Phenyl-propanoate (2e, S- and R-5e). A solution of the intermediate obtained in the previous step (6.0 mmol) in THF (35 mL) was added to a stirred suspension of Weinberg catalyst (40 mmol) in abs. EtOH (5 mL). The resulting mixture was stirred at room temperature under H2 atmosphere (4 atm) for 5 h. The suspension was filtered through a Celite pad to remove the catalyst, and the solvent was evaporated to dryness providing a dark solid residue which was chromatographed on a silica gel column (petroleum ether/ethyl acetate 7:3 as eluent), affording the desired compounds as yellow solids in 70–87% yield.

Preparation of Intermediates 5a and Both Enantiomers of 5a. N2H4·H2O (32 mmol) was added to a solution of 2e or S- or R-5e (5.25 mmol) in absolute EtOH (40 mL). The reaction mixture was stirred for 1 h at reflux and overnight at rt. The suspension was filtered, and the organic solvent was evaporated in vacuo to give a yellow solid which was dissolved in ethyl acetate. The solution was washed with brine, dried over Na2SO4, and the organic solvent was evaporated to dryness affording the desired compound in 73–86% yield as yellow oils. The resulting amines were used in the next step without any further purification.

Preparation of 5- and R-Methyl 2-[4-(2-Amino-ethyl)phenoxy]-3-phenyl-propanoate (5a). 73% and 79% yields, respectively.

Preparation of Benzyl 4-Hydroxy-phenylent-carbamate. K2CO3 (23.88 g, 172.8 mmol) and benzylchloroformate (8.2 mL, d = 1.195 g · mL−1, 57.6 mmol) were added to a suspension of tiramine hydrochloride (10.0 g, 57.6 mmol) in H2O (310 mL) and EtO (250 mL). The resulting mixture was stirred at room temperature for 4 h. The organic solvent was separated, washed with brine, dried over Na2SO4, and evaporated to dryness providing the desired compound as a white solid in 94% yield.

Preparation of Intermediates S- and R-3d. A solution of diisopropylazodicarboxylate (DIAD, 3.72 g, 18.42 mmol) in anhydrous THF (30 mL) was added dropwise to an ice-bath cooled mixture of R- or S-methyl lactate (1.96 g, 18.41 mmol), benzyl 4-hydroxy-phenylent-carbamate (4.31 g, 18.40 mmol), and triphenylphosphine (4.84 g, 18.40 mmol) in anhydrous THF (30 mL). The reaction mixture was stirred at room temperature for 48 h, under N2 atmosphere. THF was evaporated in vacuo, and a mixture of Et2O and hexane (50 mL, 1:1) was added to the residue. The resulting precipitate was filtered off, and the filtrate was evaporated to dryness. The residue was chromatographed on a silica gel column (CHCl3/ethyl acetate 9:2 as eluent) affording the desired compounds as yellow oils in 50 and 57% yields, respectively.

Preparation of 4d. The benzyl 4-hydroxy-phenylent-carbamate (4.01 g, 14.74 mmol) was added to an ice-bath cooled suspension of 95% NaH (1.13 g, 45.83 mmol) in anhydrous DMF (80 mL). The resulting mixture was stirred at 0 °C for 0.5 h, under N2 atmosphere, and then was added dropwise with a solution of ethyl 2-bromoacetate (3.69 g, 22.16 mmol) in anhydrous DMF (20 mL). The reaction mixture was stirred at room temperature for 24 h, under N2 atmosphere. The organic solvent was evaporated in vacuo, and the residue was dissolved in ethyl acetate. The solution was washed with ammonium chloride saturated solution, 0.5 N NaOH, and brine, then was dried over Na2SO4, and the organic solvent was evaporated to dryness affording the desired compound as a white solid in 95% yield.

Preparation of Intermediates S- and R-3a and 4a. Ten percent Pd/C (0.1 mmol) was added to a solution of the appropriate intermediate S-, R-3d, or 4d, (7.50 mmol) in abs. EtOH (100 mL). The resulting mixture was stirred at room temperature under H2 atmosphere (5 atm) for 1.5 h. The suspension was filtered through a Celite pad to remove the catalyst, and the solvent was evaporated to dryness providing the desired compounds as oils in quantitative yields.

PPAR Activity. Reference compounds, medium, and other cell culture reagents were purchased from Sigma-Aldrich (Milan, Italy).

Plasmids. The expression vectors expressing the chimeric receptor containing the yeast Gal4-DNA binding domain fused to the human PPARα, PPARγ, or PPARβ/δ ligand binding domain (LBD), and the reporter plasmid for these Gal4 chimeric receptors (pGal5TPGKLG3) containing five repeats of the Gal4 response elements upstream of a minimal thymidine kinase promoter that is adjacent to the luciferase gene were described previously.52

Cell Culture and Transfections. Human hepatoblastoma cell line HepG2 (for PPARα and PPARγ) or monkey kidney cell line COS-1 (for PPARβ/δ) (Interlab Cell Line Collection, Genoa, Italy) were cultured in Minimum Essential Medium (MEM, HepG2) or Dulbecco’s Modified Eagle’s Medium (DMEM, COS-1) containing 10% of heat-inactivated fetal bovine serum, 100 U penicillin G·mL−1, and 100 μg streptomycin sulfate·mL−1 at 37 °C in a humidified atmosphere of 5% CO2. For transactivation assays, 106 cells per well were seeded in a 24-well plate and transfections were performed after 24 h with CAPHOS (Sigma, Milan, Italy), a calcium-phosphate method, according to the manufacturer’s guidelines. Cells were transfected with expression plasmids encoding the fusion protein Gal4-PPARα LBD or Gal4-PPARγ LBD or Gal4-PPARδ LBD (30 ng), pGal5TPGKLG3 (100 ng), and pCMV β-gal (250 ng). Four hours after transfection, cells were treated for 20 h with the indicated ligands. Luciferase activity in cell extracts was then determined by a luminometer (VICTOR2 V Multilabel Plate Reader, PerkinElmer). β-Galactosidase activity was determined using β-1-galactopyranoside (Sigma, Milan, Italy) as described previously.52 All transfection experiments were repeated at least twice.
Differential Scanning Calorimetry. DSC experiments were performed with a MicroCal VP-DSC microcalorimeter (MicroCal Inc., Northampton, MA, USA). The samples were dialyzed against the Hepes buffer (Hepes 20 mM, pH 8.0, TCEP 1 mM) and gently degassed before scanning. The LBD of PPARγ was expressed as the N-terminal His-tagged protein using a PET28 vector and purified as previously described.22 The protein concentration was 10 μM, and the ligand concentration was 20 μM. The concentration of PPARγ (30.58 kDa) was determined spectrophotometrically using the extinction coefficient ε280 = 0.341 at 280 nm. The reference cell was filled with the same solvent mixture as that used for the sample, but lacking the protein. The experiment was performed ranging from 10 to 100 °C, and the heating rate was 1 °C·min⁻¹. Thermograms were corrected by subtracting the instrumental baseline, obtained with both cells filled with the same solvent, and normalized for protein concentration. When a post-transitional baseline could be determined, a progress curve was subtracted; otherwise, a straight line connecting the initial and the final temperature of the overall transition was used.53 Tm (temperature of maximum heat capacity) and ΔH (heat reaction) were calculated using the Origin 7.0 software provided by MicroCal.

Isothermal Titration Calorimetry. ITC experiments were performed at 25 °C using a MicroCal ITC300 microcalorimeter (MicroCal Inc., Northampton, MA, USA). PPARγ was extensively dialyzed against the buffer of choice (Hepes 20 mM, pH 8.0, TCEP 1 mM, or Tris-HCl 20 mM, pH 8.0, and TCEP 1 mM) with Amicon Ultrafilters, and the final exchange buffer was then used to dilute the ligand stock solutions (20 or 50 mM in DMSO). DMSO was added to the protein solution at the same percentage of the ligand solution (below 5%). Samples were centrifuged before the experiments to eliminate possible aggregates. Protein and ligand solutions were degassed before use. Titrations were performed at 25 °C. The protein solution (30–120 μM) was placed in the sample cell, and the ligand solution (5–15 times more concentrated than the protein) was loaded into the syringe injector. The titrations involved 19 injections of 2 μL at 180 s intervals. The syringe stirring speed was set at 1000 rpm. Reference titrations of ligands into buffer were used to correct for heats of dilutions. Buffers of different heats of ionization were used for Hepes and Tris-HCl at 25 °C, respectively.54 The thermodynamic data were processed with Origin 7.0 software provided by MicroCal. The values of ΔH were measured for each titration, and fitting the binding isotherms with a one-site binding model yielded the values of the association constant (K_a). The system also gave information about the change in entropy (ΔS). The binding free energy (ΔG) and dissociation constant (K_d) were calculated from the experimentally determined values of ΔH and K_a using eqs 1 and 2:

\[\Delta G = -RT \ln(K_a) = \Delta H - T \Delta S \]
\[K_d = 1/K_a \]

where R is the gas constant (1.987 cal·mol⁻¹·K⁻¹), and T is the working temperature (298 K). The reported parameters are the average of triplicate measurements. To correct for any discrepancies in the baseline outlined by the software, a manual adjustment was performed. In some cases, the parameter K_a was kept fixed during the refinement to obtain a best fit, especially at the beginning of the curve.

Computational Chemistry. Molecular modeling and graphics environments (MOE)55 and UCSF-CHIMERA software packages,6 running on a 2 CPU (PIV 2.0–3.0 GHz) Linux workstation.

Ligand and Protein Setup. The core structures of compounds 2 and 4 were constructed using standard bond lengths and bond angles of the MOE fragment library. The carbohydrate box was taken as dissociated. Geometry optimizations were accomplished with the MMFF94X force field, available within MOE. The coordinates of PPARγ in complex with 2 (PDB code: 3R8I) were used in the docking experiments. Bound ligand was removed. A correct atom assignment for Asn, Gln, and His residues was done, and hydrogen atoms were added using standard MOE geometries. Partial atomic charges were computed by MOE using the AMBER99 force field. All heavy atoms were then fixed, and hydrogen atoms were minimized using the AMBER99 force field and a constant dielectric of 1, terminating at a gradient of 0.001 kcal mol⁻¹ Å⁻¹.

Docking Simulations. Docking of 2 and 4 to PPARγ was performed with GOLD, version 5.0.4,66 which uses a genetic algorithm for determining the docking modes of ligands and proteins. The binding site was defined as a 13 Å sphere centered on the OH oxygen of Y473 in the PPARγ structure. The Goldscore-CS docking protocol was adopted in this study.58 In this protocol, the poses obtained with the original Goldscore function were rescored and reranked with the GOLD implementation of the ChemScore function.55,56 To perform a thorough and unbiased search of the conformation space, each docking run was allowed to produce 200 poses without the option of early termination, using standard default settings. The top solution obtained after reranking of the poses with ChemScore was selected to generate the PPARγ/ligand complexes.

Protein Expression, Purification, and Crystallization. The LBD of PPARγ was expressed as N-terminal His-tagged protein using a PET28 vector and purified onto a Ni²⁺-nitriolactic acid column (GE Healthcare) as previously described.65 Crystals of apo-PPARγ were obtained by vapor diffusion at 18 °C using a sitting drop made by mixing 2 μL of protein solution (10 mg·mL⁻¹), in 20 mM Tris and 1 mM TCEP, pH 8.0) with 2 μL of reservoir solution (0.8 M sodium citrate and 0.15 M Tris, pH 8.0). The crystals were soaked for 8 days in a storage solution (1.2 M sodium citrate and 0.15 M Tris, pH 8.0) containing the ligand (0.1 mM). The ligand dissolved in DMSO was diluted in the storage solution so that the final concentration of DMSO was 0.5%. The storage solution with glyceral 20% (v/v) was used as the cryoprotectant. Crystals of PPARγ/2 belong to the space group C2 with cell parameters shown in Table 1 of the Supporting Information. The asymmetric unit is formed by one homodimer.

Structure Determination. X-ray data were collected at 100 K under a nitrogen stream using synchrotron radiation (beamline ID14-1 at ESRF, Grenoble). The detected intensities were processed using the programs MOSFLM and SCALA.57 Structure solution was performed with AMoRe,58 using the coordinates of PPARγ/R-1 (PDB code: 2H4) as a starting model. The coordinates were then refined with CNS.59 All data between 8–2.3 Å were included. The statistics of crystallographic data and refinement are summarized in Table 1 of the Supporting Information. The coordinates of PPARγ/2 have been deposited in the Brookhaven Protein Data Bank (PDB) with the code 3R8I.

Adipogenesis Assay. The adipogenesis assay was performed as previously described.60 Briefly, 3T3-L1 cells (American Type Culture Collection, Manassas, VA, USA) were cultured in DMEM supplemented with 10% 10% bovine calf serum. Two days after reaching confluence, differentiation was induced in DMEM supplemented with 10% fetal calf serum and 1 μM dexamethasone, 0.5 mM 3-isobutyl-1-methylxanthine (IBMX), and 10 μg insulin·mL⁻¹. After 48 h, cells were supplemented with medium containing 10 μg insulin·mL⁻¹ for an additional four days. Alternatively, cells were differentiated with medium containing 5 μg insulin·mL⁻¹ and 1 μM rosiglitazone or the other ligands. Medium was replenished with ligands every other day. Lipid content was determined by the staining with Oil Red O. Pictures were taken with an Axiovert 200 microscope at 20× magnification. The quantitation of the intracellular dye was performed after extraction by isopropanol and by reading the absorbance at 550 nm.

Gene Expression in 3T3-L1 Adipocytes. Total RNA was extracted from 3T3-L1 adipocytes with Trizol (Sigma, Milano, Italy) followed by purification on RNeasy cartridges (Qiagen, Milano, Italy) according to the manufacturer’s instructions. One microgram of total RNA was used to quantitate the mRNA levels of Fabp4, Glut4, and Acrp30 by real time qPCR using a one-step kit with Taqman probes (Bio-Rad Laboratories, Milano, Italy) in a CFX 384 thermal cycler (Bio-Rad). 36B4 was used as the house keeping gene for data normalization. The primer sequences were mouse Fabp4 forward primer 5′-GCC-GTGGAAATTCGTAGAA-3′, mouse Fabp4 reverse primer 5′-GCTGTG-CACCATCCTTGT-3′, and mouse Glut4 forward primer 5′-GCTTCCACCTTTCTGTCGT-3′, mouse Glut4 reverse primer 5′-GCTTTCACTTTCTGTCGT-3′.
S′-TGTCGGTGGTTTCTCCACCTG-3′, mouse Glut4 reverse primer S′-CCATCGATCCGCAACTATCG-3′, and mouse Glut4 Taqman probe S′-ACTCATACCTCTGTTGAGCACTTCTC-3′; and mouse Glut4 Taqman probe S′-ACCTGTAACCTTCTGGTGGTCTT-3′; mouse Acrp30 forward primer S′-AGGACTCCAGACCATCCAG-3′; mouse Acrp30 reverse primer S′-CCTGTACCCACCACTCTCC-3′; and mouse Acrp30 Taqman probe S′-CCTTAGACAAAGAAGACATCCTC-3′; mouse 36B4 forward primer S′-AGATGACGACCATGCCGAT-3′; mouse 36B4 reverse primer S′-GTTCCTGCCCCACGACC-3′; and mouse 36B4 Taqman probe S′-CAGCTCAGAGGAGGCG-3′.

Animal Studies. Six weeks old C57BL/6j male mice (at least 6 animals/group) (Charles River Laboratories, Calco, Italy) were fed a high fat diet containing 45% fat as the calorie source for 16 weeks. PPARα ligands were administered once a day for 2 weeks by oral gavage in 0.5% fat diet containing 45% fat as the calorie source for 16 weeks. PPAR ligands followed the Italian and European Community legislation. Mice were anesthetized with 1% isoﬂurane and resitoglazone (10 mg/kg/day) and glucose concentration was determined with a OneTouch Ultra Glucometer (LifeScan).

Blood samples were taken from the tail at 15 min intervals, and glucose concentration was determined with a OneTouch Ultra Glucometer (LifeScan). Four

Western Blot Analysis. Total proteins were extracted from cell culture by homogenization in a radioimmunoprecipitation assay (RIPA) buffer (0.5 M NaCl, 1% Triton X-100, 0.5% NP40, 1% deoxycholic acid, and 3.5 mM sodium dodecyl sulfate (SDS)), with 20% protease inhibitor cocktail (Sigma, Missouri, USA) and measured by the Bradford method. Total cellular proteins were separated by electrophoresis on 8% SDS–polyacrylamide gel and electro-transferred onto PVDF membranes. Membranes were then incubated with the primary antibody. PPARα monoclonal antibody was from Cayman Chemical (Ann Arbor, MI, USA). Stock solutions of these ligands as well as our ureidofibrate-like compounds were purchased from Cayman Chemical (Ann Arbor, MI, USA). Stock solutions of these ligands as well as our ureidofibrate-like compounds were prepared at 20 mM in DMSO and stored in aliquots at −20 °C.

Cell Lines. Our in vitro model was made up of HT-29 adenocarcinoma, LoVo, and HCT116 metastatic colon adenocarcinoma.

Determination of the IC_{50} was performed using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. On day 1, 10,000 cells/well in a volume of 200 μL were seeded in 96-wells plates. In each plate, one column contained cells not exposed to drugs (control), and 5 columns contained cells exposed to increasing concentrations of drugs. Each drug was repeated in 6 identical wells. On day 2, ligands (1, 5, 10, 50, and 100 μM) were added with different times of drug exposure (1 and 2 days). For each drug, results were expressed as dose–effect curves with a plot of the fraction of unaffected (surviving) cells versus drug concentration. The IC_{50} value was defined as the drug concentration yielding a fraction of affected (no surviving) cells = 0.5, compared with that of untreated controls and calculated using CalcuSoft software. Each experiment was done in triplicate.

Statistical Analyses. Statistical analyses were performed via one-way ANOVA with post-test analysis for multiple group comparisons, using GraphPad Prism, version 5.0 (GraphPad Software, San Diego, CA). Differences with p values less than 0.05 were considered statistically significant.

Evaluation of Cytotoxicity. Determination of the IC_{50} was performed using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. On day 1, 10,000 cells/well in a volume of 200 μL were seeded in 96-wells plates. In each plate, one column contained cells not exposed to drugs (control), and 5 columns contained cells exposed to increasing concentrations of drugs. Each drug was repeated in 6 identical wells. On day 2, ligands (1, 5, 10, 50, and 100 μM) were added with different times of drug exposure (1 and 2 days). For each drug, results were expressed as dose–effect curves with a plot of the fraction of unaffected (surviving) cells versus drug concentration. The IC_{50} value was defined as the drug concentration yielding a fraction of affected (no surviving) cells = 0.5, compared with that of untreated controls and calculated using CalcuSoft software. Each experiment was done in triplicate.

Statistical Analyses. Statistical analyses were performed via one-way ANOVA with post-test analysis for multiple group comparisons, using GraphPad Prism, version 5.0 (GraphPad Software, San Diego, CA). Differences with p values less than 0.05 were considered statistically significant.

Effects on Cell Proliferation. Compound 6 and troglitazone were purchased from Cayman Chemical (Ann Arbor, MI, USA). Stock solutions of these ligands as well as our ureidofibrate-like compounds were prepared at 20 mM in DMSO and stored in aliquots at −20 °C.

Cell Lines. Our in vitro model was made up of HT-29 adenocarcinoma, LoVo, and HCT116 metastatic colon adenocarcinoma.

Determination of the IC_{50} was performed using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. On day 1, 10,000 cells/well in a volume of 200 μL were seeded in 96-wells plates. In each plate, one column contained cells not exposed to drugs (control), and 5 columns contained cells exposed to increasing concentrations of drugs. Each drug was repeated in 6 identical wells. On day 2, ligands (1, 5, 10, 50, and 100 μM) were added with different times of drug exposure (1 and 2 days). For each drug, results were expressed as dose–effect curves with a plot of the fraction of unaffected (surviving) cells versus drug concentration. The IC_{50} value was defined as the drug concentration yielding a fraction of affected (no surviving) cells = 0.5, compared with that of untreated controls and calculated using CalcuSoft software. Each experiment was done in triplicate.

Western Blot Analysis. Total proteins were extracted from cell culture by homogenization in a radioimmunoprecipitation assay (RIPA) buffer (0.5 M NaCl, 1% Triton X-100, 0.5% NP40, 1% deoxycholic acid, and 3.5 mM sodium dodecyl sulfate (SDS)), with 20% protease inhibitor cocktail (Sigma, Missouri, USA) and measured by the Bradford method. Total cellular proteins were separated by electrophoresis on 8% SDS–polyacrylamide gel and electro-transferred onto PVDF membranes. Membranes were then incubated with the primary antibody. PPARα monoclonal antibody was from Cayman Chemical (Ann Arbor, MI, USA), and β-actin monoclonal antibody was from Sigma-Aldrich (Missouri, USA). Membranes were then probed with horseradish peroxidase-labeled secondary antibody, and the signal was detected by the ECL chemiluminescence assay from Amersham Pharmacia Biotech (Uppsala, Sweden). Expression level was evaluated by densitometric analysis using Quantity One software (Bio-Rad, Hercules, CA, USA), and the β-actin expression level was used to normalize the sample values.

Cell Cycle Analysis. Cells were exposed to the ureidofibrate-like enantiomers R-1 and S-1, troglitazone (1, 5, 10, 50, and 100 μM), or 6 (20 μM) for 1–2 days. Cells were harvested, washed twice in ice-cold PBS (pH 7.4), fixed in 4.5 mL of 70% ethanol at −20 °C, then washed once in ice-cold PBS. The pellet was resuspended in PBS containing 1 mg/mL RNase and 0.01% NP40, and the cellular DNA was stained with 50 μg/mL propidium iodide (Sigma, Missouri, USA). Cells were stored in ice for 30 min prior to analysis. Cell cycle determinations were carried out using a FACScan Flow Cytometer (Becton Dickinson), and data were interpreted using the CellQuest software, provided by the manufacturer.

Apoptosis Determination. Exponentially growing cells were treated with drug IC_{50} concentrations for one and two days and then

dx.doi.org/10.1021/jm201306q | J. Med. Chem. 2012, 55, 37–54

325 of Academ, Acadl, and Acox1 by real time qPCR using a one-step kit with Taqman probes (Bio-Rad Laboratories, Milan, Italy) in a CFX 384 thermal cycler (Bio-Rad). 36B4 was used as housekeeping gene for data normalization. The primer sequences were mouse Acadm forward primer S′-ACCCAGATCCAAAAGTACC-3′; mouse Acadm reverse primer S′-CGAAGGCAATTCCTCTGTGTC-3′, and mouse Acox1 Taqman probe S′-TGGCCATTTGTTGCTTTTTCACC-3′; mouse Acox1 reverse primer S′-GCTGTCACAAAGACTGCT-3′; mouse Academy Taqman probe S′-CACCATAACAGGCTGGTGAGCAT-3′; mouse Acadl forward primer S′-GAACCCAGAATCTAGTGAAAG-3′; Mouse Acadl reverse primer S′-GCTGTCACAAAGACTGCT-3′; mouse Acox1 Taqman probe S′-CACAATACAGACGCTCCAGCT-3′; and mouse Acox1 Taqman probe S′-CATCAGAAACTGGGGCTGTC-3′; and mouse Acox1 forward primer S′-AGATGACGACCATGCCGAT-3′; mouse Acox1 reverse primer S′-CAATGACACATACCACCC-3′, and mouse Acox1 Taqman probe S′-CAATCAGAAACTGGGGCTGTC-3′; and mouse Acox1 Taqman probe S′-CATCAGAAACTGGGGCTGTC-3′.

mouse Acox1 forward primer 5′-GCTGTCACAAAGACTGCT-3′; mouse Acox1 reverse primer 5′-CAATGACACATACCACCC-3′, and mouse Acox1 Taqman probe 5′-CAATCAGAAACTGGGGCTGTC-3′; and mouse Acox1 Taqman probe 5′-CATCAGAAACTGGGGCTGTC-3′. Expression level was evaluated by densitometric analysis using Quantity One software (Bio-Rad, Hercules, CA, USA), and the β-actin expression level was used to normalize the sample values.
harvested and centrifuged at 1,200 rpm for 10 min. The supernatant was discarded, and the cell pellets were washed in ice-cold PBS and resuspended in 500 μL of ice-cold 1× binding buffer (0.1 M Hepes/NaOH, pH 7.4, 1.4 M NaCl, 25 mM CaCl₂). Annexin staining was performed according to the manufacturer’s protocol (annexin V-FITC apoptosis detection kit I, Becton Dickinson). Cells were stained by the Miss Elda Desiderio Pinto (Università di Milano) assay and allowed to bind labeled annexin V. Typically, 10,000 (cell surface) leaflet soon after the induction of apoptosis. PS on the outer leaflet is, therefore, available to bind labeled annexin V. Typically, 10,000 events are collected using excitation/emission wavelengths of 488/525 and 488/675 nm for annexin V and PI, respectively. The samples were analyzed with FACScan Flow Cytometer and results carried out using CellQuest software (Becton Dickinson).

Data Analysis and Presentation. Each experiment has been repeated three times. All results shown are expressed as the mean plus SD. Significance of the differences has been evaluated by the Student’s t test. Differences were considered significant when p < 0.05.

ASSOCIATED CONTENT

* Supporting Information

Physicochemical properties and spectroscopic data for intermediates and final compounds; statistics of crystallographic data and refinement; superposition of the crystal and docked structure of 2; activity of R-1 and S-1 enantiomers toward PPARα. This material is available free of charge via the Internet at http://pubs.acs.org.

Abbreviations Used

PPAR, peroxisome proliferator-activated receptor; NEFA, nonesterified fatty acids; OGTT, oral glucose tolerance test; ITT, insulin tolerance test; HOMA-IR, homeostatic model assessment of insulin resistance; PPRE, peroxisome proliferator response elements; SPPARM, selective peroxisome proliferator-activated receptor modulator; NR, nuclear receptor; TZDs, thiazolidinediones; LBD, ligand binding domain; RXR, retinoid X receptor; HOBT, hydroxybenzotriazole; DIC, N,N-diisopropylcarbodiimide; DSC, differential scanning calorimetry; ITC, isothermal titration calorimetry; HDI, high fat diet; WAT, white adipose tissue; MRI, magnetic resonance imaging; MOE, molecular operating environment; RIPA, radioimmunoprecipitation assay; RMSF, root-mean-square fluctuation

Accession Codes

PDB ID: 2I4P; 2I4J; 3R8I.

AUTHOR INFORMATION

* Corresponding Author

*(M.C.) Phone: +39 02-50318393. Fax: +39 02-50318391. E-mail: maurizio.crestani@unimi.it. (F.L.) Phone: +39 080-5442798. Fax: +39 080-5442231. E-mail: floiodice@farmchim.uniba.it.

Present Address

University of Lausanne, Center for Integrative Genomics, Genopode Building, Room 5010, 1015 Lausanne, Switzerland.

Author Contributions

These authors contributed equally to this work.

ACKNOWLEDGMENTS

We wish to thank Dr. Krister Bamberg (AstraZeneca, Mölndal, Sweden) for kindly providing the Gal4-PPARγ vector and pET28a-PPARγ-LBD expression vector. We are also grateful to Miss Elda Desiderio Pinto (Università degli Studi di Milano) for administrative and financial management. This work was supported by grants from the Cariplo Foundation 2009,2727 (to F.G., F.L., A.L., and G.P.), EU FP6 LSHM-CT2006-037498 (to M.C.), The Giovanni Armenise-Harvard Foundation Career Development Grant (to N.M.), and Università degli Studi di Bari “Aldo Moro”.

REFERENCES

(55) Molecular Operating Environment (MOE), version 2005.06; Chemical Computing Group, Inc.: Montreal, Canada, 2005.

